40 research outputs found

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    Improved Approximation Algorithms for (Budgeted) Node-weighted Steiner Problems

    Full text link
    Moss and Rabani[12] study constrained node-weighted Steiner tree problems with two independent weight values associated with each node, namely, cost and prize (or penalty). They give an O(log n)-approximation algorithm for the prize-collecting node-weighted Steiner tree problem (PCST). They use the algorithm for PCST to obtain a bicriteria (2, O(log n))-approximation algorithm for the Budgeted node-weighted Steiner tree problem. Their solution may cost up to twice the budget, but collects a factor Omega(1/log n) of the optimal prize. We improve these results from at least two aspects. Our first main result is a primal-dual O(log h)-approximation algorithm for a more general problem, prize-collecting node-weighted Steiner forest, where we have (h) demands each requesting the connectivity of a pair of vertices. Our algorithm can be seen as a greedy algorithm which reduces the number of demands by choosing a structure with minimum cost-to-reduction ratio. This natural style of argument (also used by Klein and Ravi[10] and Guha et al.[8]) leads to a much simpler algorithm than that of Moss and Rabani[12] for PCST. Our second main contribution is for the Budgeted node-weighted Steiner tree problem, which is also an improvement to [12] and [8]. In the unrooted case, we improve upon an O(log^2(n))-approximation of [8], and present an O(log n)-approximation algorithm without any budget violation. For the rooted case, where a specified vertex has to appear in the solution tree, we improve the bicriteria result of [12] to a bicriteria approximation ratio of (1+eps, O(log n)/(eps^2)) for any positive (possibly subconstant) (eps). That is, for any permissible budget violation (1+eps), we present an algorithm achieving a tradeoff in the guarantee for prize. Indeed, we show that this is almost tight for the natural linear-programming relaxation used by us as well as in [12].Comment: To appear in ICALP 201

    Prize-Collecting Steiner Networks via Iterative Rounding

    Full text link
    Abstract. In this paper we design an iterative rounding approach for the classic prize-collecting Steiner forest problem and more generally the prize-collecting survivable Steiner network design problem. We show as an structural result that in each iteration of our algorithm there is an LP variable in a basic feasible solution which is at least one-third-integral resulting a 3-approximation algorithm for this problem. In addition, we show this factor 3 in our structural result is indeed tight for prize-collecting Steiner forest and thus prize-collecting survivable Steiner network design. This especially answers negatively the previous belief that one might be able to obtain an approximation factor better than 3 for these problems using a natural iterative rounding approach. Our structural result is extending the celebrated iterative rounding approach of Jain [13] by using several new ideas some from more complicated linear algebra. The approach of this paper can be also applied to get a constant factor (bicriteria-)approximation algorithm for degree constrained prize-collecting network design problems. We emphasize that though in theory we can prove existence of only an LP variable of at least one-third-integral, in practice very often in each iteration there exists a variable of integral or almost integral which results in a much better approximation factor than provable factor 3 in this paper (see patent application [11]). This is indeed the advantage of our algorithm in this paper over previous approximation algorithms for prize-collecting Steiner forest with the same or slightly better provable approximation factors.

    Unconstrained and Constrained Fault-Tolerant Resource Allocation

    Full text link
    First, we study the Unconstrained Fault-Tolerant Resource Allocation (UFTRA) problem (a.k.a. FTFA problem in \cite{shihongftfa}). In the problem, we are given a set of sites equipped with an unconstrained number of facilities as resources, and a set of clients with set R\mathcal{R} as corresponding connection requirements, where every facility belonging to the same site has an identical opening (operating) cost and every client-facility pair has a connection cost. The objective is to allocate facilities from sites to satisfy R\mathcal{R} at a minimum total cost. Next, we introduce the Constrained Fault-Tolerant Resource Allocation (CFTRA) problem. It differs from UFTRA in that the number of resources available at each site ii is limited by RiR_{i}. Both problems are practical extensions of the classical Fault-Tolerant Facility Location (FTFL) problem \cite{Jain00FTFL}. For instance, their solutions provide optimal resource allocation (w.r.t. enterprises) and leasing (w.r.t. clients) strategies for the contemporary cloud platforms. In this paper, we consider the metric version of the problems. For UFTRA with uniform R\mathcal{R}, we present a star-greedy algorithm. The algorithm achieves the approximation ratio of 1.5186 after combining with the cost scaling and greedy augmentation techniques similar to \cite{Charikar051.7281.853,Mahdian021.52}, which significantly improves the result of \cite{shihongftfa} using a phase-greedy algorithm. We also study the capacitated extension of UFTRA and give a factor of 2.89. For CFTRA with uniform R\mathcal{R}, we slightly modify the algorithm to achieve 1.5186-approximation. For a more general version of CFTRA, we show that it is reducible to FTFL using linear programming

    A Nearly Linear-Time PTAS for Explicit Fractional Packing and Covering Linear Programs

    Get PDF
    We give an approximation algorithm for packing and covering linear programs (linear programs with non-negative coefficients). Given a constraint matrix with n non-zeros, r rows, and c columns, the algorithm computes feasible primal and dual solutions whose costs are within a factor of 1+eps of the optimal cost in time O((r+c)log(n)/eps^2 + n).Comment: corrected version of FOCS 2007 paper: 10.1109/FOCS.2007.62. Accepted to Algorithmica, 201

    Efficiently Passive Monitoring Flow Bandwidth

    No full text

    Improved Approximation Algorithms for Metric Facility Location Problems

    No full text
    In this paper we present a 1.52-approximation algorithm for the metric uncapacitated facility location problem, and a 2-approximation algorithm for the metric capacitated facility location problem with soft capacities. Both these algorithms improve the best previously known approximation factor for the corresponding problem, and our soft-capacitated facility location algorithm achieves the integrality gap of the standard LP relaxation of the problem. Furthermore, we will show, using a result of Thorup, that our algorithms can be implemented in quasi-linear time

    Facility location in sublinear time

    No full text
    Abstract. In this paper we present a randomized constant factor approximation algorithm for the problem of computing the optimal cost of the metric Minimum Facility Location problem, in the case of uniform costs and uniform demands, and in which every point can open a facility. By exploiting the fact that we are approximating the optimal cost without computing an actual solution, we give the first algorithm for this problem with running time O(n log 2 n), where n is the number of metric space points. Since the size of the representation of an n-point metric space is Θ(n 2), the complexity of our algorithm is sublinear with respect to the input size. We consider also the general version of the metric Minimum Facility Location problem and we show that there is no o(n 2)-time algorithm, even a randomized one, that approximates the optimal solution to within any factor. This result can be generalized to some related problems, and in particular, the cost of minimum-cost matching, the cost of bichromatic matching, or the cost of n/2-median cannot be approximated in o(n 2)-time.
    corecore